

LEARN.
CONNECT.
DO BUSINESS.

Multiangle Spectropolarimetric Imagers for Aerosol

Giacomo Mariani

John C. Pearson, Kevin Burke, David J. Diner

Superconducting Materials and Devices Group NASA Jet Propulsion Laboratory - California Institute of Technology

Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

Introduction

1

Agenda

- Particulate matter and health
- Spectropolarimetric imager description
- Observing modalities
- Camera architecture
- Focal Plane Module
- Packaging
- Spectropolarimetric filters
- Conclusions

Particulate matter (PM) impacts on human health

Science framework

Airborne PM is a well-known cause of cardiovascular and respiratory diseases.

Coarse particles (PM₁₀-PM_{2.5}) irritate our respiratory systems.

Fine particles (PM_{2.5}) penetrate deep into our lungs. Toxins can migrate to other organs.

- Heart attacks
- Stroke
- Lung disease, lung cancer
- Aggravated asthma
- Low birth weight and preterm delivery

Importance of particle type

Slicing up the spectrum

	UV		п		Visibl	е			Near-	IR	Sh	ortwa	ve IR	
Band (nm)	367	389	415	445	551	645	749	762.5	864	943	1039	1607	1880	2126
polarimetric	а	absorbing particles			fine particles			coarse particles						

✓ PM "type" refers to the fractional proportions of PM₁₀, PM_{2.5}, and PM_{2.5} components (sulfate, nitrate, organic carbon, black carbon, dust)

According to the US EPA (2013)

- The evidence is not yet sufficient to allow differentiation of those constituents or sources that may be more closely related to specific health outcomes.
- The use of central fixed-site monitors to represent population exposure is a key factor limiting our knowledge as to which PM types pose the greatest health risks.

Imager and Applications

4

Technical capabilities

Instrument

Two pushbroom spectropolarimetric cameras on a 2-axis gimbal

A bit larger than a large microwave oven

Investigation

Obtain data for globally distributed Primary Target Areas

- Instrument observations
- Ground station observations
- Chemical transport model outputs
- Health records

Obtain data for globally distributed Secondary Target Areas, Calibration/Validation Target Areas, and Targets of Opportunity

Analyses and Findings

Reporting on

- Epidemiological investigations of health impacts of particulate pollution
- Other mission science
- Instrument performance, calibration, and validation

Imager can integrate multiple observing modalities

5

Observing modes

Multi-angle radiometry

Enhances the aerosol signal relative to surface reflection

Sensitive to aerosol particle size and shape

Precursors: MISR, AATSR, POLDER, AirMSPI

Broad spectral coverage

UV: aerosol absorption and height

VNIR: Fine mode aerosols

SWIR: Coarse mode aerosols

Precursors: MODIS, TOMS,

OMI, GLI

Multi-angle polarimetry

Sensitive to particle size and compositional proxies such as refractive index

Precursors: POLDER, airborne RSP, AirMSPI

Camera Architecture

6

Instrument definition and block diagram

- ✓ The instrument is a gimbaled pushbroom camera system.
- ✓ The camera architecture uses the spectropolarimetric imager approach developed for AirMSPI and AirMSPI-2
- Detector rows are overlaying with stripe spectral filters and patterned wiregrid polarizers
- Polarization signals are modulated using photoelastic modulators (PEMs) and achromatic quarter-wave plates (QWPs)
 - Modulation provides significantly greater accuracy than static polarimetry

Focal plane module subsystem

Focal Plane Module (FPM) Camera Telescope Modulator FPM Detector Filter Focal Plane Mount

FPM Design Requirements

8

- ✓ Several requirements are imposed on the FPM design, including:
 - 1. Electronic Interface Power, housekeeping, and data rates
 - 2. Filter smoothness and cleanliness minimize stray light
 - 3. Dark current levels ensure adequate SNR for science reg's
 - 4. Pixel arrangement dictated by design at the ROIC level
 - 5. Spectral quantum efficiency UV/Vis silicon photodiodes, IR HdCdTe detector

Focal Plane Detector

Q

ROIC detector array mounted on a test board showing 130 wire bonds

- The UV/VNIR and SWIR ROICs share the same reticle and have the same number of pixels (1280 pixels × 128 rows) and pixel size (15 μm × 15 μm)
- SWIR row pitch is 15 μm and the UV/VNIR row pitch is 20 μm
- ✓ UV/VNIR array uses integrated (on-chip) photodiodes, and the SWIR array uses hybridized HgCdTe p+/n photodiodes (Teledyne)
- UV/VNIR and SWIR arrays are separated by a gap
- The two designs are electrically isolated, except for the common substrate

Packaging approaches for FPM imagers

Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

Solid core technology demonstrated

11

	Heritage (AirMSPI-2)	Current design	Implementation		
Dooleaning	CPGA/rigid-flex	CPGA/board	Standard engineering practice		
Packaging	Soldered CPGA	Jumpered wires	Tested for stress relief		
Electronics Interface	Connectors on flex	Connectors on board	Streamlined mate/demate		
ROIC design Minor fixes post-fab		Peer-reviewed fixes incorporated	ROIC fabrication		

- ROIC is a schedule-critical item.
- ROIC is well understood, mods use proven practices
- All functionalities from design baseline are implemented in the current instrument
- Wafer screening process underway to identify candidates

Spectropolarimetric filter assembly

12

- Simultaneously front- and back-lit photograph of the AirMSPI-2 spectropolarimetric filter
 - Shows the stripe spectral filters and patterned polarizers
- Unique integrated assembly which starts from a wiregrid polarizer substrate
- Butcher-block type filter assembly is aligned and built directly onto polarizer substrate

Integrated Detector and Filter

13

Focal Plane Module

Band	Center wavelength (nm)	QE (%)*	Active detector rows
1	365	4	1
2	385	8	1
3	415	20	1
4	445	27	2 (polarimetric)
5	550	50	1
6	645	52	2 (polarimetric)
7	749	33	1
8	762	33	2
9	867	17	2
10	945	6	2
11	1035	72	4 (polarimetric)
12	1610	75	1
13	1880	80	1
14	2125	82	1

Filter aligned to the detector array and bonded to the custom ceramic pin grid array

UV/VNIR array

SWIR array

*Quantum efficiency based on previous detector performance

Assembly/testing flowchart

- Wafer screening occur before hybridization of MCT detector
- Testing #1 will verify most of the electrical functionalities of the ROIC/detector
- Testing #2 will verify all the opto-electrical functionalities of the FPM

Conclusions

15

- Spectropolarimetric imagers based on pushbroom cameras are presented
- Integrated capabilities of multi-angle radiometry, broad spectral coverage, multi-angle polarimetry drive epidemiological investigations of health impacts of particulate pollution
- ✓ JPL-designed ROIC allow for UV/Vis and IR sensing on the same chip
- ✓ ROIC + spectropolarimetric filters will constitute the focal plane modules to be integrated at the camera level